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A new cubic-polynomial interpolation method, where the gradient of the quantity is a free 
parameter, is proposed for solving hyperbolic-type equations. Various choices of the gradient 
are investigated, and a stable and less diffusive scheme is made possible without the clipping 
or the flux-correction procedure. 0 1985 Academic Press, Inc. 

I. INTRODUCTION 

At present, there are many techniques for solving the hyperbolic-type equations. 
To avoid numerical instability and diffusion, various techniques are employed: two 
of these are the numerical viscosity [l] and the FCT algorithm [Z]. 

In treating the advection terms, a profile within a mesh must be correctly 
described, otherwise a large number of meshes must be used. There are mainly two 
ways to reduce the number of meshes. One is to use a rezoning of mesh to follow 
the variation of quantities. The other is to approximately describe a profile within a 
mesh. The former has been extensively studied by many authors [S] and proves to 
be satisfactory in a one-dimensional problem, but its ability deteriorates in a multi- 

imensional situation. The latter way includes a variety of methods: the finite 
element method (FEM), the boundary element method (BEM), the particle 
scheme, and so on. The FEM and BEM have not always worked successfully for 
hyperbolic-type equations. An ordinary particle scheme, such as PIC [4], employs 
a number of particles to describe the profile within a mesh. In order to reduce the 
number of particles and attain a higher-order accuracy in the advection, we 
proposed the second-order accurate fluid particle scheme (SOAP) in our previous 
paper [S, 61. The scheme assumes a distribution of physical quantities within a 
finite-sized particle so that physical quantities are exactly conserved. 

In this paper, we propose a new method (CIP) to solve the hyperbolic-type 
equations. The method takes a similar approach to the FEM, the BEM, and the 
particle scheme, and is interpreted to be an extension of a one-particle version of 
our SOAP scheme. Accordingly the scheme may be a bridge between the FEM and 
the particle schemes. 

261 
0021~9991/t% $3.00 

Copyright 0 1985 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



262 TAKEWAKI, NISHIGUCHI, AND YABE 

In Section II, the basic algorithm is introduced. Section III provides the results of 
test runs with some modifications and discussions. From these results, it is proven 
that a stable and less diffusive scheme is possible by the combination of two dif- 
ferent schemes. The CIP scheme gives better ‘results than the shape-preserving 
spline [7] and Knorr and Mend’s results [S] for square-wave and sine-wave 
propagations. 

II. BASIC ALGORITHM 

At first, let us consider a simple model equation such as 

af af -p~=o, 

where c is a constant value. Equation (1) is integrated over an interval 
(~~-q,~i+~p)~ (t,, t,+~) to be 

s 
xt+"2 (f"+'(X)-fn(X))dX= --C /11+' (fj+l/* (t)-fi-l/z (t))dl, (2) 

XI - I,2 

where the superscript n and the subscript i on f mean the value off at t = t, and 
x = xi, respectively. Since the profile propagates at a speed c, the right-hand side in 
Eq. (2) can be written as 

as seen in Fig. 1. Here At= tn+l - t,. If the spatial profile off” is known, all terms 
except the term off ‘+’ in Eq. (2) can be obtained from the integration off”. 

FIG. 1. The schematics of the flux calculation. 
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There are many choices for an approximate functional form of J: In this paper, 
we choose the cubic-polynomial interpolation within an interval (xi- i, xi) such as 

f(X)=ai(X-Xj-1)3+bi(x-xi-l)2 

+j-- 1(x - xi- 1) -tfj- 1. (3) 

Here fz- 1 and f I- 1 are the value and the spatial derivative off at x = xi- I, respec- 
tively. If we require the continuities of f and f’ at all boundaries 
Xl ,‘.., xi- 1, xi, xi+ 1 ,...> then we obtain 

ajdX3+bidX2+f:~,dlx+fi-1=fj (4al 

3aiAx2+2bjAx+f:-,=f/, (4b) 

where dx=xi-xi_, =const. Consequently, the coefficients ai and bi can be 
described in terms off and f’ as 

a,Jfi+f:-JAx-2(f,-Ld 
I Ax3 (5a) 

,=3(f,-f:-,)-(.fi'+~f;-~)~x 
I Ax= (5b) 

Once the functional form off is given, Eqs. (2) and (2’) lead to 

l/192( lSfr$,’ + 156J;’ ’ + lSf;_‘; - 5f;;: 1 Ax $ 5f;"_: * Ax) 

= l/192( lSj-;+ 1 + 156f; -I- lSf;- I - 5f ;: 1 Ax -t Sj-;“_ 1 Ax) 

-(dFi- AFi_ ,)//4x 
and 

AFi = ( - 1~18 + d/8 + x3/6 - rC4/4)f ;‘; 1 Ax2 

-k (K/S + ~*/8 - K3/6 - K4/4) f  ;” Ax2 

+(K/2-3U2/4t K4/2) f;,, AX 

+(K/2+3K2/4-K4/2)f; Ax, Cf331 

where u = cAtlAx. 
When all f; and f i” are given, the value of the right-hand side of Eq. (6a) is 

calculated. But both f ‘+’ and fin+’ cannot be calculated at once from this 
equation alone. Then s’” + 1 must be determined by the other method. For this pur- 
pose, the spatial derivative of Eq. (l), 

af’ aft -c- at= ax’ 
is used. 
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In the linear case given in Eq. (l), Eq. (1’) refers to the propagation of the 
gradient and this solution can be used for estimating the spatial derivative fi” + 1 as 

j-j” + l -f’(xi, t,, 1) =f’(xi - cdt, t,). (7) 

For more general equations, the method can be easily extended. For example, if 
Eq. (1) has an external force term such as 

af af ag T&+cz=-&> 

the gradient off is advanced at first by the equation 

(14 

and then it is shifted according to Eq. (7). Here, Eq. (la’) is solved by the finite dif- 
ference approximation. Once f ‘n +i is given by the above method, fn+ l can be 
obtained by solving Eq. (6a). 

III. LINEAR WAVE PROPAGATION 

The reason why the cubic-polynomial interpolation is employed in our scheme is 
clarified in view of the basic algorithm mentioned in the previous section. The con- 
tinuities of the value and the first spatial derivative are fulfilled with one free 
parameter retained. The free parameter, which is fin + ’ as in Eq. (7) gives us a 
variety of choices for the scheme and allows us to find a stabler and less diffusive 
scheme. 

It is not necessary to adopt the above-mentioned method for the estimation of 
f ‘nC1. Some of the possibilities for f'"+' are described and tested in this section. 
For this purpose, we use the problem of square-wave propagation described by 
Eq. (1) with K = cAt/Ax = 0.2, where At is the time step and Ax is the uniform mesh 
size. It should be noted that our scheme can be easily modified for a nonuniform 
mesh size such as SOAP and FEM. In the following, various choices for fln+i are 
described and the results are shown in Fig. 2 at 1000 time steps after. 

(a) Shifted Gradients. The shifted gradient given by Eq. (7) is used. 

(b) Minor Gradients. The gradient offis estimated by the finite difference of the 
values f at mesh points. If the one-sided finite difference is used, there exist two 
choices-upstream and downstream. Here, we adopt the one which has a smaller 
absolute value: 

f;"+'= U-r+ 1 -f; )/Ax if If;,, -f;l<If;-fl-,l 
w -f ;- 1 )/Ax otherwise. @a) 
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FIG. 2. Propagation of a square wave for K = cdl/Ax = 0.2 after 1000 time steps in the case of (a) 
shifted-gradient, (b) minor-gradient, (c) average gradient, and (d) upstream gradient. The dashed line 
indicates the analytic solution. 

(c) Average Gradients. As in case (b), the finite difference is used. But the cen- 
tered difference is used here: 

f;“+L (fY+ 1 -t-r- 1 wx- @bJ 

(d) Upstream Gradients. Here the upstream difference is used. 

f;"+'= (fr-fl-lv~x if c>O 

(fl, , -f ~/AX otherwise. 

The results of all cases are shown in Figs. 2(a)-(d) corresponding to cases 
(a)-(d), respectively. In view of these results, the acceptable schemes are cases (a) 
and (b). If we use the clipping as used in the FCT algorithm or other methods to 
eliminate the humps, case (a) is the most hopeful scheme because of its small 
numerical diffusion. But it is shown in the following explanation that this 
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overshooting will disappear by a simple method. The answer to this problem is 
given by considering the origin of the overshooting. 

The overshooting occurs in case (a) because the initial discontinuities at the 
square wave’s edges are so large that the cubic polynomial for interpolation cannot 
trace the wave. Subsequently, the overshooting occurs only after one time step in 
order to adjust itself. Once the profile is adjusted to the polynomials, the humps at 
the edges scarcely grow. If the initial profile is taken to be as smooth as possible, 
then the problem is solved. In general, such an initial setting is hardly acceptable. 
Accordingly, we take a simpler way. We initially broaden the discontinuities of the 

l 
t  

xi+1/2 

Calculate f" dx and 1 AF. 

xi-1/2 

I 

Predict fvn+l usir?g the scheme (a) : 

"Shifted-gradient" 

Calculate f"+l from Eq.(6a) 

f 

I 
I r---------- i---------7 

I 
Re-calculate fIni froro fn+l 

i 
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I 
using the scheme (b) 
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I 
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FIG. 3. The flow chart of the CIP scheme. The part shown by the solid line is calculated at all time 
steps and the part shown by the dashed line is inserted during the initial 10 steps and thereafter every 50 
steps. 
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FIG. 4. Same run as in Fig. 2, but the algorithm (CIP) given in Fig. 3 is used. 

square wave, coupling scheme (a) with scheme (b) as shown in Fig. 3 and when the 
profile becomes smooth enough for the cubic polynomial to trace it naturally, we 
switch the algorithm to (a). In some cases, this procedure alone is not enough for 
the elimination of the overshooting which appears at a later time. Overshooting of 
this kind is due to the accumulation of errors. Because the gradient of the profile is 
shifted by an approximate procedure [Eq. (7)], the accumulated errors cause the 
mismatch between the profile and the predicted gradient. In order to avoid the 
growth of overshooting, operation (b) is sometimes inserted as shown in Fig. 3. The 
example given in Fig. 4 is obtained by the following procedure: Scheme (b) is inser- 
ted to recalculate the gradient f’” + 1 from f n + ’ obtained by scheme (a) at the initial 
IO steps. After this only scheme (a) is used. After every 50 time steps, scheme (b) is 
inserted. Combination of the two schemes gives us a new scheme which has less dif- 
fusion and less overshooting. We call the scheme CIP (cubic-interpolated pseudo- 
particle), because the procedure is basically similar to the particle scheme SOAP a3 

will be shown in a forthcoming paper. 

FIG. 5. Propagation of a sine wave with discontinuity for K = cAr/Ax = 0.2 after 1000 time steps. The 
algorithm (CIP) given in Fig. 3 is used. 
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Figure 5 shows the result by the CIP in which a sine wave with discontinuity is 
being propagated. The discontinuity is represented by four points and the 
amplitude of the positive peak increases by about 1.11% and that of the negative 
peak decreases by about 3.33 % after 1000 time steps. 

The results given in Figs. 4 and 5 are less diffusive than the shape-preserving 
spline [7] and Knorr and Mond’s results [S]. 

IV. CONCLUSION 

In this paper, we proposed a new cubic-polynomial interpolation scheme, where 
the gradient of the quantity is a free parameter. The choice of the gradient has 
proved to be important. The gradient is calculated by the spatial derivative of the 
model equation and is sometimes corrected by using the value of quantity in order 
to eliminate the mismatch between the value and the predicted gradient. This 
scheme can be extended to nonlinear equations. The result will be given in a 
forthcoming paper. 
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